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Abstract
The chaotic profile of dust grain dynamics associated with dust-acoustic
oscillations in a dusty plasma is considered. The collective behaviour of the dust
plasma component is described via a multi-fluid model, comprising Boltzmann
distributed electrons and ions, as well as an equation of continuity possessing
a source term for the dust grains, the dust momentum and Poisson’s equations.
A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the
dust grain density dynamics is derived. The dynamical system is cast into
an autonomous form by employing an averaging method. Critical stability
boundaries for a particular trivial solution of the governing equation with
varying parameters are specified. The equation is analysed to determine
the resonance region, and finally numerically solved by using a fourth-order
Runge–Kutta method. The presence of chaotic limit cycles is pointed out.

PACS numbers: 52.27.Lw, 52.30.−q, 82.40.bj, 05.45.−a

1. Introduction

The properties of dusty plasmas have recently been attracting growing interest. A dusty (or
complex) plasma, compared to an electron–ion plasma, i.e. a large ensemble of electrons and
positive ions, is characterized by an additional charged component of micron or submicron-
sized dust particulates. The dust grain charge, qd , in contrast to the electron and ion charge,
is not constant. When dust grains are immersed in a gaseous plasma, the charge residing on
dust particles varies as a result of the flow of plasma particles onto their surface [1, 2]. Dust
grains are considerably massive (typically a billion times heavier than protons), and their size
ranges from nanometres to millimetres. The presence of massive charged dust particles in a
plasma can drastically affect its dispersive and nonlinear properties [3, 4]. Dust grains are an
important component of astrophysical systems where self-gravitational effects are dominant

1751-8113/07/240473+09$30.00 © 2007 IOP Publishing Ltd Printed in the UK F473

http://dx.doi.org/10.1088/1751-8113/40/24/F06
mailto:mehdy_momeny@yahoo.com
mailto:ioannis@tp4.rub.de
http://stacks.iop.org/JPhysA/40/F473


F474 Fast Track Communication

[5, 6]. When the dust component is uncharged, the collective dynamics is governed entirely
by gravitational interaction. However, dust grains surrounded by ionized media and radiative
environments can become highly charged. Since both interactions are of long range, and the
gravitational interaction is much weaker than the electromagnetic interaction, the latter can
significantly influence the collective dynamics of a spatially extended self-gravitating system.

The collective behaviour of charged dust in a plasma is effectively described via a
(multi-)fluid model. The presence of charged dust grains introduces new features in the
nonlinear dynamical profile of dusty plasmas, some of which are absent in ordinary electron–
ion plasmas. Various linear and nonlinear mechanisms involved in dusty plasmas give rise
to different instabilities, whose elucidation is of great importance in understanding the origin
of dust fluctuations. A recent study was devoted to a dust charging instability modelled via
the chaotic behaviour of charged dust in the plasma [7]. A Van der Pol–Mathieu equation
was introduced therein in order to model the dynamical behaviour of the dust grain charge.
Generic nonlinear oscillator model differential equations of this kind can be studied by existing
analytical methods [8, 9]. The Van der Pol (VdP) equation has been studied by many
researchers [10–12]. Siewe [13] has investigated a system consisting of an extended Duffing–
Van der Pol oscillator in which resonance and off-resonance oscillations are analysed using
the multiple time scale method, while Maccari [14] introduced a new asymptotic perturbation
method in search of an exact solution.

The present work aims at investigating the dynamical behaviour of charged dust grains
near parametric resonance. Relying on a fluid model, which takes into account a source term
for the dust grains, in addition to electrostatic, a Van der Pol–Mathieu nonlinear equation is
shown to govern the dust grain dynamics. The equation is analysed in the vicinity of resonance,
and finally numerically solved by using a fourth-order Runge–Kutta method.

2. Derivation of a Van der Pol–Mathieu equation for dust density

We consider an unmagnetized collisionless dusty plasma consisting of electrons (mass me,
charge −e), ions (mass mi , charge +Zie) and dust grains. We consider the mass of each
dust grain md to be constant, while the dust grain charge is a time-dependent variable
qd(t) = −Zd(t)e.

The cold inertial dust fluid density nd and velocity vd are governed by the density evolution
equation

∂nd

∂t
+ nd0

∂ud

∂z
= αnd − 1

3
βn3

d , (1)

where t and z are independent time and (one-dimensional) space variables. Here, the dust
particle number density at equilibrium nd,0 was employed to simplify the convective term,
since the dust is assumed to be homogeneously distributed (namely ∂nd/∂z ≈ 0). The
coefficients α and β entering the source term on the right-hand side of equation (1) correspond
to a rate of charged dust grain production (by electron absorption) and loss (due to three-body
recombination, namely X+ + e− + Z → X∗ + Z), respectively. The dust momentum equation
reads

∂ud

∂t
= − qd

md

∂φ

∂z
. (2)

The electric potential φ is determined by the Poisson equation

∂2φ

∂z2
= −4πe(Zini − ne − Zdnd), (3)



Fast Track Communication F475

where ni and ne denote the ion and electron number density, respectively. At equilibrium,
we have Zini0 − ne0 − Zdnd0 = 0, where ns0, for s = i(e), denotes the ion (electron)
particle number density at equilibrium, respectively. We shall assume a harmonic potential
variation in space, characterized by a wave length λ ≡ 2π/k (and a wave number k), i.e.
φ(z, t) = φ̂(t) exp(ikz), so that ∂2φ/∂z2 = −k2φ.

The electrons and ions are assumed to be in local thermodynamic equilibrium, so their
number densities, ne and ni , obey a Boltzmann distribution, namely

ne = ne0 exp

(
eφ

kBTe

)
, (4)

and

ni = ni0 exp

(−Zieφ

kBTi

)
, (5)

where kB is the Boltzmann constant and Te (Ti) denotes the electron (ion) temperature.
By differentiating equations (1) and (2) with respect to time and space, respectively, in

order to eliminate the velocity ud , we obtain the equation

∂2nd

∂t2
− (

α − βn2
d

)∂nd

∂t
= nd0qd

md

∂2φ

∂z2
. (6)

For eφ/kBTe � 1 and Zieφ/kBTi � 1, we can approximate ne and ni as

ne

ne0
≈ 1 +

eφ

kBTe

+
1

2

(
eφ

kBTe

)2

+ · · · (7)

and

ni

ni0
≈ 1 − Zieφ

kBTi

+
1

2

(
Zieφ

kBTi

)2

+ · · · . (8)

Combining (7) and (8) into equation (3), and taking into account terms up to first order, we
obtain

∂2φ

∂z2
≈ −4πqdk

2

k2 + k2
D

nd, (9)

where we have defined the Debye wave number kD ≡ λ−1
Deff = (

λ−2
De + λ−2

Di

)1/2
, where

λDe = (kBTe/4πne0e
2)

1
2 and λDi = (

kBTi/4πni0Z
2
i e

2
) 1

2 are the electron and ion Debye
radii, respectively. Note that only the first-order contributions in expansions (7) and (8) have
been retained to derive equation (9). Also, the dust component was assumed to be small
(namely Zdnd,0 � Zini,0, ne,0, so we have set Zini,0 − ne,0 ≈ 0); this is in fact a realistic
assumption, in naturally occurring dusty plasmas. We see that the inertialess electrons and
ions affect the propagation of dust acoustic waves [15] via a dynamical charge balance. In
the long Debye-wavelength limit λ � λDeff , namely k � kD , one may neglect the electric
potential variation effect in equation (9).

By substituting equation (9) into equation (6), we can eliminate the potential φ. We
shall assume, for analytical tractability, that the fluctuating dust charge varies in time as
qd = qd0(1 + h cos γ t)1/2, where the (small) parameter h and the frequency γ are real
constants. We thus finally obtain a closed evolution equation for the dust density

d2nd

dt2
− (

α − βn2
d

)dnd

dt
+ ω2

0(1 + h cos γ t)nd = 0, (10)

where we have defined the characteristic oscillation frequency ω0 = ωpdk
/(

k2 + k2
D

)1/2
(≈ωpd

in the long-wavelength limit), and the dust plasma frequency ωpd = (
4πnd0q

2
d0

/
md

)1/2
. The
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dust density was assumed to be uniform in space. For our purposes, it is appropriate to cast
the latter equation in a reduced (dimensionless) form. Defining the dimensionless time and
density variables t̃ = ω0t and x = nd/nd0, as well as the parameters α̃ = α/ω0, β̃ = βn2

d0

/
ω0

and γ̃ = γ /ω0, we obtain

d2x

dt̃2
− (α̃ − β̃x2)

dx

dt̃
+ ω̃2

0(1 + h cos γ̃ t̃ )x = 0. (11)

The dimensionless parameter ω̃0, obviously equal to unity, is retained in the following for
‘book-keeping’ purposes (to pin point the role of the plasma frequency in the forthcoming
analysis, where appropriate). The reduced evolution equation (11) will be the object of the
study which follows, so we shall keep in mind that all quantities henceforth refer to the physical
quantities defined and appearing in (11); nevertheless, the tilde will be dropped everywhere.

The second term on the left-hand side of equation (11) is the characteristic of the Van der
Pol (VdP) nonlinear oscillator model equation; indeed, the VdP equation, which generically
describes a self-sustained nonlinear oscillation, is exactly recovered for h = 0. On the other
hand, for α = β = 0, one recovers a Mathieu-type equation, which describes a parametric-type
oscillation. The ordinary differential equation (ODE) (11) is a hybrid equation, combining the
features of the Van der Pol and the Mathieu equations.

The Van der Pol equation may be viewed as the fundamental example of a nonlinear
ordinary differential equation. It possesses a periodic oscillatory solution, which is a periodic
attractor. Every nontrivial solution tends to this periodic solution, a property that no linear
flow can present. On the other hand, in order for a periodic solution to be viable, some related
stability property must be satisfied. In contrast to this physical picture, an oscillatory dynamical
system may be subject to an external force which changes the oscillation period parametrically,
as in the Mathieu equation. In parametric resonance, where the oscillation parameters depend
on time, if the initial condition of the velocity and position is zero, the system may be stable, in
contrast to the case in ordinary resonance where the oscillation amplitude increases with time,
even with a zero initial condition. The Van der Pol–Mathieu equation (11) will be analysed
via perturbation theory, and will then be investigated numerically.

3. Qualitative analysis: the averaging method

In this section, we shall investigate the dynamical behaviour of the nonlinear Van der Pol–
Mathieu (VdPM) oscillator, with the effect of parametric resonance. The basic equation (11)
can be expressed as

d2x

dt2
− (α − βx2)

dx

dt
+ ω2(t)x = 0, (12)

where ω2(t) = ω2
0(1+h cos γ t) is the (reduced) time-dependent (square) oscillation frequency

function.

3.1. Reduction to a pair of amplitude evolution ODE’s

Since a parametric resonance is stronger for a frequency ω(t) nearly twice the eigenfrequency
ω0 (see e.g. [8, section 27]), we shall consider the parametric excitation frequency to be
γ = 2ω0 + ε, where ε � 1 is a (small) real parameter.

We assume a solution given by the ansatz

x = a(t) cos

(
ω0 +

ε

2

)
t + b(t) sin

(
ω0 +

ε

2

)
t, (13)

where the (real) coefficients a and b vary slowly with time.
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Substituting equation (13) into (11) and keeping only first-order terms ε and h, we obtain
the system of equations

da

dt
= α

2
a − b

2

(
ε +

hω0

2

)
− β

8
(a3 + ab2) ≡ f (a, b), (14)

and
db

dt
= α

2
b +

a

2

(
ε − hω0

2

)
− β

8
(b3 + a2b) ≡ g(a, b). (15)

Equations (14) and (15) represent a system of first order, autonomous, ordinary differential
equations, governing the amplitudes of the approximate solution expressed in (13). We note
that equations (14) and (15) are invariant under the transformation (a, b) → (−a,−b).

3.2. Stability analysis

Relying on equations (14) and (15), we may determine the steady-state solution (defining
equilibrium) and, possibly, periodic solutions around it, in addition to their stability profile.
First, we note that the range of values of the small parameter ε is restricted. Assuming that
the coefficients a and b are small and vary as a ∼ exp(st) and b ∼ exp(st), one obtains (upon
linearizing) the relation(

s − α

2

)2

= 1

4

[(
hω0

2

)2

− ε2

]
, (16)

which leads to the reality condition

|ε| <
|h|ω0

2
. (17)

3.3. Initial equilibrium solution

It is easily deduced from equations (14) and (15) that a = b = 0 (namely x = 0) is an
equilibrium solution, which determines a fixed point. The stability of the fixed point is
determined by the eigenvalues of the Jacobian matrix of the vector fields in equations (14) and
(15). The characteristic polynomial reads

p(λ) = λ2 − αλ +
α2

4
+

1

4

(
ε2 − h2ω2

0

4

)
. (18)

From equation (18), it is clear that the Jacobian matrix of the vector field at the initial
equilibrium solution has two complex (conjugate, to one another) eigenvalues, λ1 and λ2,
namely

λ1,2 = A ± iB, (19)

where A = α/2 and B = (1/2)
(
h2ω2

0

/
4 − ε2

)1/2
. Hence, solving equations (14) and (15)

near the origin is tantamount to determining a dynamical phase-space trajectory in the form
(a, b) = exp(At)(cos Bt, sin Bt). We deduce that the equilibrium state is locally stable for
α < 0, hence Reλ1,2 < 0, while it is unstable for α > 0 (namely Reλ1,2 > 0). For α = 0,
the eigenvalues are imaginary, so the equilibrium state is a closed orbit centre. We see that
the zero critical value of the parameter α determines a Hopf bifurcation point, where one
encounters a significant qualitative change (a bifurcation) in the system’s dynamical profile.

In our case, one physically assumes α > 0 (recall that α is defined as a rate of charged
dust grain production); therefore, no matter what the initial condition is, the system will never
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approach the equilibrium state x = 0. As a matter of fact, even if it starts very close to the
equilibrium state it will keep far from the origin, which therefore repels all initial states. The
origin (a, b) = (0, 0) determines a saddle point, which is unstable. Note that the bifurcation
occurs by varying the α parameter.

3.4. Periodic solutions

In order to find the periodic solutions of the system, we have to determine the eigenvalues of
the Jacobian matrix of equations (14) and (15), which can be written as

J =
(

a11 a12

a21 a22

)
,

where

a11 = ∂f

∂a
= α

2
− β

8
(3a2 + b2), a12 = ∂f

∂b
= −1

2

(
ε +

hω0

2

)
+

β

4
ab,

a21 = ∂g

∂a
= 1

2

(
ε − hω0

2

)
− β

4
ab, a22 = ∂g

∂b
= α

2
− β

8
(3b2 + a2).

(20)

The characteristic polynomial of the above matrix can be expressed, for convenience, as

p(λ) = λ2 − T λ + D, (21)

where T ≡ a11 +a22 and D ≡ a11a22 −a21a12 are the trace and the determinant of the Jacobian
matrix, respectively. Here, a stable solution can only exist if T < 0 and D > 0, thus both
of the eigenvalues need to be negative. This yields one of the critical boundaries, which is
determined by T = 0, while D > 0. The critical boundary is characterized by a pair of purely
imaginary eigenvalues

λ1,2 = ±i
√

D. (22)

We see that the periodic solution may lose its stability via a Hopf Bifurcation at the critical
boundary, i.e. where T = 0.

4. Numerical results and discussion

The Van der Pol–Mathieu equation possesses an oscillatory (periodic) solution, which is a
periodic attractor: every nontrivial solution tends to this periodic solution. Periodic solutions
may be sought by varying α and β parameters.

For the purpose of integrating the Van Der Pol–Mathieu equation (12) numerically, the
latter may be expressed as a set of two coupled ODEs in the form

dx

dt
= y,

(23)
dy

dt
= (α − βx2)

dx

dt
− ω2(t)x.

We may now investigate the dynamical profile of equations (23) numerically. We shall use an
indicative set of fixed values for the system parameters: ω0 = 1.0 and h = 0.01, in addition
to the initial conditions x0 = y0 = 1.0 for t0 = 0. Employing a fourth-order Runge–Kutta
method, we have solved equation (11). The system was found to possess various stable and
unstable limit cycles. The phase diagram in (x, y) and (t, x) planes, for different values of α

and β, is depicted in figures 2–4. Periodic states occur when we choose a11 + a22 = 0, i.e.
α = β; see in figure 1. For α < β, the system exhibits a stable limit cycle: large amplitude
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Figure 1. Phase diagram of (a) x–y and (b) t–x planes for α = β = 0.01.
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Figure 2. Phase diagram of (a) x–y and (b) t–x planes for α = 0.01 and β = 0.1.
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Figure 3. Phase diagram of (a) x–y and (b) t–x planes for α = 0.1 and β = 0.001.
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Figure 4. Phase diagram of (a) x–y and (b) t–x planes for α = 1 and β = 0.01.

initial states are attracted to the limit cycle (cf figure 2). In figure 3 (for α = 100β = 0.1), the
system’s behaviour is initially unstable, and a typical chaotic limit cycle picture is obtained;
the solution later tends to a limit cycle from inside. As α increases, the system attains a stable
state in a deformed limit cycle (cf figure 4). The stability profile may be investigated in terms
of the amplitudes (a ad b) and parameters ε and h. The stability region in the (α, β) plane is
represented in figure 5 (for a representative set of amplitude and parameter values.

The Van der Pol oscillator (with no external force) is known to converge to a limit cycle
and tracks a stable orbit. In our case, we see that lower values of α lead to a limit cycle
similar to that of the (stable) Mathieu equation, while for higher values of α, a profile similar
to the limit cycle of the Van der Pol equation is recovered. We conclude that this hybrid
evolution system features a balance among an instability region, where it behaves according to
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Figure 5. Stability and instability regions in the (α − β) plane, for ε = 0.1, h = ω0 = 1 and
a = b = 1 (cf equations (20) and (21)). The regions enclosed below the line T = 0 (i.e. for T < 0)
and the oval-shaped curve D = 0 are stable; all other regions are unstable.

the Mathieu equation, and a stability region, where it follows the Van der Pol equation profile
(recall that the VdP equation always possesses a periodic solution).

5. Conclusion

We have derived a nonlinear Van der Pol–Mathieu-type evolution equation (11) for the density
of dust grains in dusty plasmas by considering an appropriate source term in the dust density
equation. The solution of this combined Van der Pol–Mathieu-type equation depends on
the relevant physical model parameters, namely the production rate α and the loss rate β.
We note that the system described by equation (11) is linearly unstable near the origin, for
small-amplitude perturbation, so orbits grow as they are repelled by the origin x = 0. The
nonlinear dissipative term βx2dx/dt in equation (11) eventually limits this growth, and the
amplitude saturates. However, due to the third term in equation (11), the evolution of any
known modulated oscillator function near the natural frequency of our system is controlled
by (and competes with) the loss term β. Varying the values of α and β, the behaviour of the
solution to this equation exhibits a variety of interesting profiles.

The physical interpretation of these novel results is straightforward. We see that the
charge residing on the surface of dust grains, although initially zero (neutral dust), grows as a
result of random perturbation and abandons the vicinity of the origin quite fast. A dynamical
steady state in the form of a limit cycle is then reached, whose characteristics depend on
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the physical parameters involved. This state behaves as an attractor with respect to nearby
states. The well-known phenomenon of dust grain charge reaching an asymptotic value via
random charge oscillations, as observed in experiments [1], is thus formulated in a different
framework, via the sketch of a nonlinear charge dynamical profile. Naturally, setting rates
α and β to zero, the ordinary dust-acoustic oscillations are recovered (assuming a constant
initial dust charge).
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